Search results for "Abelian integral"

showing 10 items of 18 documents

Darboux integrable system with a triple point and pseudo-abelian integrals

2016

We study pseudo-abelian integrals associated with polynomial perturbations of Dar-boux integrable system with a triple point. Under some assumptions we prove the local boundedness of the number of their zeros. Assuming that this is the only non-genericity, we prove that the number of zeros of the corresponding pseudo-abelian integrals is bounded uniformly for nearby Darboux integrable foliations.

0209 industrial biotechnologyPure mathematicsControl and OptimizationIntegrable systemTriple pointAbelian integrals[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]Darboux integrability[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)02 engineering and technologyType (model theory)01 natural sciencesIntegrating factor020901 industrial engineering & automationFOS: MathematicsLimit Cycle0101 mathematicsAbelian groupMathematics - Dynamical Systems34C07 34C08MathematicsNumerical AnalysisAlgebra and Number Theory010102 general mathematicsMathematical analysisLimit cyclesMathematics Subject ClassificationControl and Systems EngineeringBounded functionFoliation (geology)
researchProduct

Indefinite integrals involving the incomplete elliptic integrals of the first and second kinds

2016

ABSTRACTA substantial number of indefinite integrals are presented for the incomplete elliptic integrals of the first and second kinds. The number of new results presented is about three times the total number to be found in the current literature. These integrals were obtained with a Lagrangian method based on the differential equations which these functions obey. All results have been checked numerically with Mathematica. Similar results for the incomplete elliptic integral of the third kind will be presented separately.

Abelian integralCarlson symmetric formQuarter periodApplied Mathematics010102 general mathematicsMathematical analysisTrigonometric integral010103 numerical & computational mathematics01 natural sciencesJacobi elliptic functionsLegendre formSlater integralsElliptic integral0101 mathematicsAnalysisMathematicsIntegral Transforms and Special Functions
researchProduct

Indefinite integrals involving the incomplete elliptic integral of the third kind

2016

ABSTRACTA substantial number of new indefinite integrals involving the incomplete elliptic integral of the third kind are presented, together with a few integrals for the other two kinds of incomplete elliptic integral. These have been derived using a Lagrangian method which is based on the differential equations which these functions satisfy. Techniques for obtaining new integrals are discussed, together with transformations of the governing differential equations. Integrals involving products combining elliptic integrals of different kinds are also presented.

Abelian integralCarlson symmetric formQuarter periodApplied MathematicsMultiple integral010102 general mathematicsMathematical analysisTrigonometric integral010103 numerical & computational mathematics01 natural sciencesJacobi elliptic functionsVolume integralLegendre formApplied mathematics0101 mathematicsAnalysisMathematicsIntegral Transforms and Special Functions
researchProduct

Kurzweil-Henstock type integral on zero-dimensional group and some of its application

2008

A Kurzweil-Henstock type integral on a zero-dimensional abelian group is used to recover by generalized Fourier formulas the coefficients of the series with respect to the characters of such groups, in the compact case, and to obtain an inversion formula for multiplicative integral transforms, in the locally compact case.

Abelian integralGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsElementary abelian groupSingular integralLocally compact groupKurzweil-Henstock type integral zero-dimensional groupVolume integralSettore MAT/05 - Analisi MatematicaImproper integralNoncommutative harmonic analysisDaniell integralMathematics
researchProduct

A note on a generalization of Françoise's algorithm for calculating higher order Melnikov functions

2004

In [J. Differential Equations 146 (2) (1998) 320–335], Françoise gives an algorithm for calculating the first nonvanishing Melnikov function M of a small polynomial perturbation of a Hamiltonian vector field and shows that M is given by an Abelian integral. This is done under the condition that vanishing of an Abelian integral of any polynomial form ω on the family of cycles implies that the form is algebraically relatively exact. We study here a simple example where Françoise’s condition is not verified. We generalize Françoise’s algorithm to this case and we show that M belongs to the C[log t, t, 1/t] module above the Abelian integrals. We also establish the linear differential system ver…

Abelian integralMathematics(all)GeneralizationGeneral MathematicsHomotopyMathematical analysisApplied mathematicsOrder (group theory)Abelian integral; Melnikov function; Limit cycle; Fuchs systemMelnikov methodMathematics
researchProduct

A generalization of Françoise's algorithm for calculating higher order Melnikov functions

2002

Abstract In [J. Differential Equations 146 (2) (1998) 320–335], Francoise gives an algorithm for calculating the first nonvanishing Melnikov function Ml of a small polynomial perturbation of a Hamiltonian vector field and shows that Ml is given by an Abelian integral. This is done under the condition that vanishing of an Abelian integral of any polynomial form ω on the family of cycles implies that the form is algebraically relatively exact. We study here a simple example where Francoise's condition is not verified. We generalize Francoise's algorithm to this case and we show that Ml belongs to the C [ log t,t,1/t] module above the Abelian integrals. We also establish the linear differentia…

Abelian integralMathematics(all)Hamiltonian vector fieldMelnikov functionDifferential equationGeneral MathematicsAbelian integralLimit cycleAbelian integral; Melnikov function; Limit cycle; Fuchs systemHamiltonian systemFuchs systemVector fieldAbelian groupAlgorithmHamiltonian (control theory)Linear equationMathematicsBulletin des Sciences Mathématiques
researchProduct

A note on higher order Melnikov functions

2005

We present several classes of planar polynomial Hamilton systems and their polynomial perturbations leading to vanishing of the first Melnikov integral. We discuss the form of higher order Melnikov integrals. In particular, we present new examples where the second order Melnikov integral is not an Abelian integral.

Abelian integralPolynomialPure mathematicsMathematics::Dynamical SystemsApplied MathematicsMathematical analysisMathematics::Classical Analysis and ODEsPhysics::Fluid DynamicsNonlinear Sciences::Chaotic DynamicsPlanarDiscrete Mathematics and CombinatoricsOrder (group theory)Nonlinear Sciences::Pattern Formation and SolitonsMathematicsQualitative Theory of Dynamical Systems
researchProduct

Abelian integrals and limit cycles

2006

Abstract The paper deals with generic perturbations from a Hamiltonian planar vector field and more precisely with the number and bifurcation pattern of the limit cycles. In this paper we show that near a 2-saddle cycle, the number of limit cycles produced in unfoldings with one unbroken connection, can exceed the number of zeros of the related Abelian integral, even if the latter represents a stable elementary catastrophe. We however also show that in general, finite codimension of the Abelian integral leads to a finite upper bound on the local cyclicity. In the treatment, we introduce the notion of simple asymptotic scale deformation.

Abelian integralPure mathematicsApplied MathematicsMathematical analysisAbelian integralTwo-saddle cyclePlanar vector fieldsAsymptotic scale deformationCodimensionLimit cycleUpper and lower boundsPlanar vector fieldsymbols.namesakeLimit cyclesymbolsHamiltonian perturbationAbelian groupHamiltonian (quantum mechanics)BifurcationAnalysisMathematicsJournal of Differential Equations
researchProduct

Principal Poincar\'e Pontryagin Function associated to some families of Morse real polynomials

2014

It is known that the Principal Poincar\'e Pontryagin Function is generically an Abelian integral. We give a sufficient condition on monodromy to ensure that it is an Abelian integral also in non generic cases. In non generic cases it is an iterated integral. Uribe [17, 18] gives in a special case a precise description of the Principal Poincar\'e Pontryagin Function, an iterated integral of length at most 2, involving logarithmic functions with only one ramification at a point at infinity. We extend this result to some non isodromic families of real Morse polynomials.

Abelian integralPure mathematicsLogarithmApplied Mathematics34M35 34C08 14D05General Physics and AstronomyStatistical and Nonlinear PhysicsMorse codelaw.inventionPontryagin's minimum principlesymbols.namesakeMonodromylawPoincaré conjecturesymbolsPoint at infinitySpecial caseMathematics - Dynamical SystemsMathematical PhysicsMathematics
researchProduct

Alien limit cycles near a Hamiltonian 2-saddle cycle

2005

Abstract It is known that perturbations from a Hamiltonian 2-saddle cycle Γ can produce limit cycles that are not covered by the Abelian integral, even when it is generic. These limit cycles are called alien limit cycles. This phenomenon cannot appear in the case that Γ is a periodic orbit, a non-degenerate singularity, or a saddle loop. In this Note, we present a way to study this phenomenon in a particular unfolding of a Hamiltonian 2-saddle cycle, keeping one connection unbroken at the bifurcation. To cite this article: M. Caubergh et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Abelian integralsymbols.namesakeSingularitysymbolsPeriodic orbitsGeometryGeneral MedicineHamiltonian (quantum mechanics)SaddleBifurcationMathematicsMathematical physicsComptes Rendus Mathematique
researchProduct